Isobaric Vapor–Liquid Equilibria for Binary Mixtures of 1-Chlorobutane with Isomeric Butanols at 40.0 and 101.3 kPa

H. Artigas, C. Lafuente, M. C. López, F. M. Royo, and J. S. Urieta*

Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009, Spain

Isobaric vapor-liquid equilibrium (VLE) data at 40.0 and 101.3 kPa for binary mixtures 1-chlorobutane + 1-butanol, + 2-butanol, + 2-methyl-1-propanol, and + 2-methyl-2-propanol are reported. Mixtures containing 2-methyl-1-propanol at 101.3 kPa, 2-butanol and 2-methyl-2-propanol at 40.0 and 101.3 kPa show azeotropes. The VLE data are thermodynamically consistent and were correlated with Margules, Van Laar, Wilson, and NRTL equations.

Introduction

Over the last few years we have been working on the thermodynamic properties of mixtures containing isomeric butanols (1-6). As an extension of this work we present here isobaric vapor-liquid equilibrium (VLE) data for the binary systems 1-chlorobutane with isomeric butanols at 40.0 and 101.3 kPa. These compounds, chloroalkanes and butanols, have several uses in the chemical industry. No isobaric VLE data are found in the literature for these mixtures.

Experimental Section

Materials. The liquids used were 1-butanol (better than 99.8 mol %), 2-methyl-1-propanol and 2-methyl-2-propanol (better than 99.5 mol %), and 2-butanol (better than 99 mol %) obtained from Aldrich and 1-chlorobutane (better than 99.8 mol %) provided by Lab-Scan. The purity of the chemicals was checked by gas-liquid chromatography. Liquids were used without further purification. All isomeric butanols were dried over activated molecular sieves type 0.3 nm from Merck. The physical properties of the components, density and normal boiling point, appear together with published values (7) in Table 1.

Apparatus and Procedure. The vapor-liquid equilibrium measurements were carried out in a still (Labodest model) manufactured by Fischer und Verfahrenstechnik (Germany). Temperatures, T, were measured with an Automatic Systems Laboratories thermometer, model F25, with an accuracy of ± 0.01 K. The pressure in the apparatus was measured with a pressure transducer Druck PDCR 110/W (pressure indicator DPI 201) with an accuracy of ± 0.1 kPa. Liquid-phase and vapor-phase compositions, x_1 and y_1 , were determined by densimetric analysis using an Anton Paar DMA-58 vibrating tube densimeter. Prior to this, the calibration curves for 1-chlorobutane + isomeric butanols were determined; excess volumes calculated from these density measurements are reported in ref 4.

The experimental technique was checked by determining the isobaric vapor-liquid equilibria for the standard mixture benzene + cyclohexane at 101.3 kPa, and our results (8) are in good agreement with published values.

Table 1.	Densities at 298.15 K, ¿	p, and Normal Boiling
Points, T_1	b, of the Components an	nd Comparison with
Literatur	re Data (7)	

	<i>Q/</i> (kg	m ⁻³)	$T_{\rm b}/{ m K}$		
component	exptl	lit.	exptl	lit.	
1-chlorobutane	880.47	880.4	351.52	351.58	
1-butanol	805.85	806.0	390.84	390.81	
2-butanol	802.40	802.6	372.65	372.70	
2-methyl-1-propanol	797.98	797.8	380.72	380.81	
2-methyl-2-propanol	764.75^{a}	764.9ª	355.50	355.57	

^a Density at 313.5 K.

Results and Discussion

The vapor-liquid equilibrium data $(T, x_1, \text{ and } y_1)$, along with activity coefficients and excess Gibbs free energies at 40.0 and 101.3 kPa, are gathered in Table 2 and Figures 1-4. Mixtures containing 2-methyl-1-propanol at 101.3 kPa and 2-butanol and 2-methyl-2-propanol at 40.0 and 101.3 kPa show azeotropes. Furthermore, when the pressure increases, the azeotropic composition becomes richer in isomeric butanol, and the shift with mixtures containing 2-methyl-2-propanol becomes more noticeable. Information about the azeotropes is summarized in Table 3.

The activity coefficients γ_i of the components in the liquid phase were calculated from

$$\gamma_i = \frac{y_i P}{x_i p_i^{\circ}} \exp\left[\frac{(B_{ii} - V_i^{\circ})(P - p_i^{\circ}) + (1 - y_i)^2 P \delta_{ij}}{RT}\right] \quad (1)$$

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{2}$$

The vapor pressures, p_i° , of the pure components were calculated by use of the Antoine equation with the constants from Riddick et al. (9). The second virial coefficients of the pure components, B_{ii} , were obtained from TRC tables (7), and the cross second virial coefficients, B_{ij} , were calculated using the Amdur-Mason equation (10). The molar volumes, V_i° , of the saturated liquids were estimated by the Yen and Woods method (11).

The thermodynamic consistency of the data was tested by using the Herington integral method (12). The D and

Table 2.	Isobaric VLE Data,	Temperature '	T, Liquid-Phase	x1 and Vapor-Phase	y_1 Mole Fraction	s, Activity Coefficient
γ_i , and Ex	cess Gibbs Free En	ergies G ^E , for 1	l-Chlorobutane (1) + Isomeric Butar	ols (2) at the Ind	icated Pressure

				,							
T/K	x_1	y_1	γ1	<i>γ</i> 2	$G^{E/(J\cdot mol^{-1})}$	T/\mathbf{K}	x_1	y_1	γ1	γ2	$G^{E/(J \cdot mol^{-1})}$
· · · ·	1-Chlorobutane (1) + 1-Butanol (2) at 40.0 kPa										
361.80	0.0250	0.1935	2.334	1.021	125.7	327.42	0.5847	0.8991	1.374	1.628	1056.4
357 19	0.0500	0.3455	2.374	1 040	238.6	326 51	0.6567	0.9132	1 283	1 785	984.4
350 15	0.0875	0.5214	2.519	1 091	467.1	326.01	0.6885	0.9210	1 257	1 842	942 5
241.96	0.1679	0.0214	2.010	1 1 2 9	7116	205 46	0.0000	0.0210	1.207	0.072	907.9
341.20	0.1072	0.7041	2.350	1.100	711.0	323.40	0.7725	0.9310	1.100	2.273	007.3
334.60	0.2797	0.8103	2.015	1.191	895.4	325.16	0.8275	0.9353	1.095	2.860	693.8
331.25	0.3728	0.8548	1.789	1.254	988.6	324.62	0.9009	0.9549	1.048	3.581	454.3
329.03	0.4832	0.8826	1.541	1.391	1038.1	324.47	0.9327	0.9614	1.024	4.552	335.9
				1-Chlore	butane(1) + 1	-Butanol (2)) at 101.3 k	Pa			
384 09	0.0360	0.2301	2 637	1 016	163.0	356 54	0 5037	0 8963	1 490	1 226	038.0
070 70	0.0303	0.2301	2.037	1.010	100.9	054.75	0.0007	0.0203	1.420	1.520	900.0 005 C
378.70	0.0757	0.3658	2.400	1.026	200.7	304.70	0.6135	0.8546	1.269	1.543	925.6
373.25	0.1304	0.5050	2.133	1.081	517.9	354.40	0.6847	0.8764	1.178	1.633	786.4
368.15	0.1852	0.6077	2.063	1.119	690.9	353.05	0.7820	0.8966	1.098	2.099	688.8
364.86	0.2445	0.6785	1.905	1.131	760.2	352.07	0.8741	0.9245	1.042	2.775	482.4
362.71	0.2955	0.7263	1.789	1.129	776.5	351.47	0.9337	0.9513	1.022	3.494	302.2
359.05	0.4062	0.7877	1.565	1.208	878.4						
				1-Chlor	obutane $(1) + 9$	-Butanol (9) at 40.0 kT) a			
245.00	0 0202	0.9910	9 704	1.000		2-Dutanoi (2	0 6059	a 0 0 1 0 2	1 095	1 500	967.0
345.00	0.0392	0.2210	2.794	1.002	120.0	020.49	0.0055	0.0123	1.200	1.000	001.0
339.67	0.0962	0.4094	2.501	1.032	330.4	324.67	0.6974	0.8373	1.185	1.811	804.0
333.13	0.2019	0.5893	2.135	1.117	668.7	324.10	0.8013	0.8681	1.091	2.306	636.2
329.78	0.3178	0.6926	1.790	1.159	784.1	323.82	0.8710	0.9055	1.058	2.584	462.3
327.72	0.4049	0.7411	1.618	1.246	887.0	323.86	0.9405	0.9443	1.020	3.296	242.3
326.76	0.4909	0.7757	1.445	1.327	882.7						
				1-Chlore	but one $(1) \pm 9$	-Butanal (2)) of 101 ዓ ৮	P _o			
260 55	0.0246	0 1900	0.960	1 000	1149	259 60	0 5 2 C 0	07100	1 004	1 9 4 9	704.0
309.00	0.0340	0.1290	2.200	1.009	114.4	302.00	0.0000	0.7122	1.204	1.343	794.0
366.47	0.0772	0.2518	2.145	1.016	224.6	351.57	0.6272	0.7579	1.209	1.470	767.6
361.33	0.1742	0.4409	1.914	1.032	418.4	350.46	0.7750	0.8214	1.096	1.884	621.8
357.45	0.2876	0.5575	1.635	1.104	629.4	350.31	0.8883	0.8945	1.046	2.256	380.7
354.95	0.3846	0.6370	1.501	1.160	730.6	350.55	0.9391	0.9358	1.028	2.493	236.5
353.97	0.4478	0.6715	1.398	1.218	762.3						
			1.4	Chlorobuta	$ne(1) \pm 2$ -Met	hvl-1-prope	$\mathbf{nol}(2)$ at $A($	ነሰራዎል			
252 27	0.0961	0 1091	0 9 9 7	0.000	75 7	296 00	0 5000	0.0 102	1 405	1 499	1021 0
303.37	0.0201	0.1921	2.027	0.555	70.7	020.99	0.5099	0.8403	1.490	1.420	1001.9
346.62	0.0659	0.3914	2.798	1.063	360.1	325.89	0.5954	0.8600	1.363	1.611	1022.4
341.13	0.1250	0.5586	2.505	1.068	487.9	325.06	0.6954	0.8790	1.229	1.936	932.2
337.15	0.1790	0.6407	2.286	1.127	689.6	324.54	0.7786	0.8967	1.142	2.341	786.5
331.38	0.3003	0.7555	1.954	1.210	921.9	324.18	0.8860	0.9267	1.051	3.292	484.0
328.63	0.4043	0.8131	1.721	1.258	972.8	324.06	0.9481	0.9625	1.024	3.725	245.0
			1-0	hlorohuto	$no(1) \pm 9$ Moth	wl 1 proper	(2) = 1	1.9 l-Do			
974 95	0.0474	0.2242	9 655	1 026	290 0	252 80	0 5700	0.7051	1 910	1 464	0/1.9
0/4.40	0.04/4	0.2040	0,000	1.041	220.0	002.00	0.0199	0.1901	1.017	1.404	741.4 0F7 F
368.63	0.1040	0.4088	2.441	1.041	393.8	301.83	0.0001	0.8295	1.200	1.708	657.5
361.73	0.2008	0.5643	2.102	1.129	740.4	351.73	0.7747	0.8562	1.100	2.016	678.4
357.67	0.3158	0.6717	1.782	1.175	870.3	350.89	0.8603	0.9013	1.069	2.316	510.6
356.18	0.3881	0.7184	1.618	1.200	883.2	350.87	0.9348	0.9452	1.033	2.758	280.7
354.49	0.4663	0.7535	1.484	1.294	947.4						
			1.0	Chlorobuta	ne(1) + 2.Met	hvl-2-propa	nol(2) at $4i$	0 k Pa			
221.06	0.0493	0 1579	2 269	1 000	1/0.9	291 04	0 6001	0 6630	1 947	1 570	825 4
331.00	0.0465	0.1078	2.000	1.009	149.0	321.04	0.0001	0.0030	1.247	1.570	030,4
328.35	0.1111	0.2982	2.320	1.024	312.1	320.78	0.6998	0.7011	1.142	1.880	753.4
325.86	0.1958	0.4253	2.053	1.046	478.6	320.99	0.8077	0.7795	1.091	2.143	579.6
322.31	0.3918	0.5851	1.608	1.191	783.9	321.37	0.8807	0.8196	1.050	2.551	437.2
321.64	0.4889	0.6379	1.440	1.280	814.5	321.97	0.9346	0.8778	1.024	3.322	269.0
			1-0	hlorobuta	ne(1) + 2-Meth	ivl-2-propar	nol (2) at 10	1.3 kPa			
353,50	0.0392	0.0941	2.269	1.017	141.5	345.74	0.6250	0.6238	1.192	1.468	728.7
351.86	0.0849	0 1818	2 1 2 4	1 027	257 9	346.05	0 7249	0.6785	1 107	1 689	626.3
940 50	0.00-0	0.1010	1 000	1.027	100.0	946 67	0.12-0	0.0100	1 000	1 957	5020.0
047.00	0.1740	0.3124	1.000	1.040	400.0	340.07	0.0000	0.1314	1.000	1.007	000.4
347.81	0.2832	0.4205	1.664	1.088	592.3	347.86	0.8966	0.8176	1.020	2.371	309.3
346.61	0.4113	0.5128	1.449	1.169	704.7	348.95	0.9423	0.8745	1.004	2.800	183.7
345.84	0.5001	0.5665	1.348	1.264	766.1						

 ${\cal J}$ values were calculated by means of the following equations:

$$D = 100 |\int_{x_1=0}^{x_1=1} \ln(\gamma_1/\gamma_2) \, \mathrm{d}x_1| / \int_{x_1=0}^{x_1=1} \ln|\gamma_1/\gamma_2| \, \mathrm{d}x_1 \quad (3)$$

$$J = 150|\theta|/T_{\min} \tag{4}$$

 θ is the difference between the maximun and minimum boiling points, and T_{\min} is the lowest boiling point measured in the whole range of composition. With Herington's test the results are considered to be consistent when D - J <

10. The eight binary systems studied here proved to be consistent, presenting deviations D - J < 3.

Calculated activity coefficients present positive deviations from ideality and decrease with increasing pressure. This behavior can be explained by taking into account that the breaking of the dipole interactions in the chlorobutane and the self-association of butanols contribute to positive deviations from ideality and, on the other hand, that the OH group of the butanols interacts with the Cl group of the chlorobutane, which leads to negative deviations from ideality.

Figure 1. T- x_1 - y_1 diagram for 1-chlorobutane (1) + 1-butanol (2): (\Box, \blacksquare) experimental data at 40.0 kPa; (\bigcirc, \bullet) experimental data at 101.3 kPa; (-) data from the Wilson equation.

Figure 2. T- x_1 - y_1 diagram for 1-chlorobutane (1) + 2-butanol (2): (\Box, \blacksquare) experimental data at 40.0 kPa; (\bigcirc, \bullet) experimental data at 101.3 kPa; (-) data from the Wilson equation.

The activity coefficients were correlated with the Margules (13), Van Laar (14), Wilson (15), and NRTL (16) equations. The parameters A_{12} , A_{21} and α_{12} of the equations (see definitions in ref 17), average deviations between experimental and calculated temperatures ΔT and vaporphase compositions Δy_1 , and activity coefficients at infinite dilution are listed in Table 4. The results indicate that the Wilson equation is the most suitable to correlate the activity coefficients.

From activity coefficients the excess Gibbs free energies are calculated by means of the following equation:

$$G^{\rm E} = RT(x_1 \ln \gamma_1 + x_2 \ln \gamma_2) \tag{5}$$

Figure 3. T- x_1 - y_1 diagram for 1-chlorobutane (1) + 2-methyl-1propanol (2): (\Box, \blacksquare) experimental data at 40.0 kPa; (\bigcirc, \bullet) experimental data at 101.3 kPa; (-) data from the Wilson equation.

Figure 4. T- x_1 - y_1 diagram for 1-chlorobutane (1) + 2-methyl-2propanol (2): (\Box , \blacksquare) experimental data at 40.0 kPa; (\bigcirc , \bullet) experimental data at 101.3 kPa; (-) data from the Wilson equation.

Table 3. Azeotropic Compositions in Mole Fraction $x_{1(az)}$ at Temperature $T_{(az)}$

system	P/kPa	<i>x</i> _{1(az)}	$T_{(az)}/K$
1-chlorobutane + 2-butanol	40.0	0.9450	324.03
	101.3	0.9120	350.30
2-methyl-1- propanol	101.3	0.9600	351.37
2-metĥyl-2- propanol	40.0	0.7200	320.74
	101.3	0.6165	345.74

The excess Gibbs free energies are positive over the entire range of composition and decrease with increasing Table 4. Correlation Parameters A_{12} , A_{21} , and α_{12} , Average Deviations between Calculated and Experimental Temperatures ΔT and Vapor-Phase Compositions Δy_1 , and Activity Coefficients at Infinite Dilution γ_i^{∞} for 1-Chlorobutane (1) + Isomeric Butanols (2) at the Indicated Pressure

equation	A_{12}	A_{21}	$\Delta T/K$	Δy_1	γı [∞]	γ2 [∞]		
1-Chlorobutane $(1) \pm 1$ -Butanol (2) at 40.0 kPa								
Margules	1.0052^{a}	1.7821ª	0.47	0.0144	2.73	5.94		
Van Laar	1.0614^{a}	1.9634^{a}	0.34	0.0149	2.89	7.12		
Wilson	236.7469^{b}	5425.8272^{b}	0.29	0.0161	3.01	9.58		
NRTL	4938.3034 ^b	-87.2544^{b}	0.34	0.0149	2.89	7.08		
$(\alpha_{12} = 0.3)^b$					2.00			
1 Ch	lorobutano (1	$1) \pm 1$ Butanol	(2) at	101 9 1-10	0			
Marmiles	0 9970	1 4191	0.33	0.0119	a 971	1 19		
Van Laar	1 0155	1 4859	0.00	0.0112	2.71	4.10		
Wilson	130 8885	3614 5107	0.27	0.0107	2.70	4.42		
NRTI	3441 5024	258 2030	0.20	0.0104	2.04	4.31		
$(\alpha_{12} = 0.3)$	0441.0024	200.2900	0.20	0.0107	2.11	4.40		
1 (1		1) 0 Dectama	1 (0) -+	40 0 I-D.	_			
I-Ur Monumilar	1 0764	1) + 2-Butano	1(2) at	40.0 KP8	3	4 5 1		
Margules	1.0764	1.5066	0.19	0.0100	2.93	4.01		
Van Laar	1.0943	1.0040	0.15	0.0103	2.99	4.78		
WIISON	631.1477	3/17.1312	0.12	0.0100	3.10	0.41		
NRTL	3482.7408	442.9650	0.15	0.0102	3.00	4.83		
$(u_{12} - 0.0)$								
1-Ch	lorobutane (1	l) + 2-Butanol	(2) at	101.3 kP	a			
Margules	0.8381	1.2402	0.24	0.0099	2.31	3.46		
Van Laar	0.8527	1.3143	0.18	0.0102	2.35	3.72		
Wilson	86.5436	3374.0834	0.13	0.0102	2.39	3.99		
NRTL	3358.7999	-118.9833	0.19	0.0101	2.35	3.69		
$(u_{12} = 0.3)$								
1-Chlorob	utane $(1) + 2$	2-Methyl-1-pro	panol	(2) at 40.	0 kPa			
Margules	1.1005	1.7358	0.36	0.0140	3.01	5.67		
Van Laar	1.1339	1.8683	0.23	0.0142	3.11	6.48		
Wilson	530.9677	4850.8579	0.14	0.0148	3.25	8.33		
NRTL	4420.9739	234.7442	0.23	0.0143	3.12	6.52		
$(\alpha_{12} = 0.3)$								
1-Chlorob	utane $(1) + 2$	-Methyl-1-pro	panol (2) at 101	.3 kPa	ι		
Margules	1.0956	1.4554	0.24	0.0153	2.99	4.29		
Van Laar	1.1071	1.4975	0.22	0.0147	3.03	4.47		
Wilson	750.1605	3425.4100	0.16	0.0137	3.13	4.98		
NRTL	3189.7444	593.6772	0.21	0.0146	3.05	4.52		
$(\alpha_{12} = 0.3)$								
1-Chlorob	utane $(1) + 2$	2-Methyl-2-pro	panol	(2) at 40.	0 kPa			
Margules	0.9868	1.4686	0.09	0.0119	2.68	4.34		
Van Laar	1.0150	1.5272	0.08	0.0121	2.76	4.61		
Wilson	499.3121	3629.7257	0.06	0.0118	2.85	5.07		
NRTL	3606.9297	192.1085	0.08	0.0121	2.77	4.62		
$(\alpha_{12} = 0.3)$			0.00					
 1 Chlouchutana (1) + 9 Mathul 9 nuonanal (9) at 101 9 bD-								
Margulas	0.9515	1 1957	0 11	0 0089	.0 KF 8	3 11		
Van Laar	0.9560	1 1458	0.11	0.0002	2.60	3 14		
Wilson	760 7803	2344 5825	0.10	0.0070	2.66	3 25		
NRTL	2226 4753	681 6753	0.10	0.0077	2.61	3 16		
$(\alpha_{12} = 0.3)$	220.1100	001.0100	0.10	0.0017	2.01	0.10		

^a Dimensionless. ^b Joules per mole.

pressure. At 40.0 kPa $G^{\rm E}$ values increase in the sequence 2-methyl-2-propanol < 2-butanol < 2-methyl-1-propanol < 1-butanol, while at 101.3 kPa this arrangement changes little because it can be observed that the mixtures containing 2-methyl-1-propanol and 1-butanol present similar $G^{\rm E}$ values.

Literature Cited

- Pardo, J.; Rodríguez, V.; López, M. C.; Royo, F. M.; Urieta, J. S. J. Chem. Thermodyn. 1992, 24, 113.
- (2) Rodríguez, V.; Pardo, J.; López, M. C.; Royo, F. M.; Urieta, J. S. J. Chem. Eng. Data 1993, 38, 350.
- (3) Lafuente, C.; Pardo, J.; Rodríguez, V.; Royo, F. M.; Urieta, J. S. J. Chem. Eng. Data 1993, 38, 554.
- (4) Artigas, H.; Santafé, J.; López, M. C.; Royo, F. M.; Urieta, J. S. J. Chem. Thermodyn. 1993, 25, 1403.
- (5) Artigas, H.; Lafuente, C.; Rodríguez, V.; Royo, F. M.; Urieta, J. S. J. Chem. Thermodyn. 1994, 26, 151.
- (6) Lafuente, C.; Rodríguez, V.; López, M. C.; Royo, F. M.; Urieta, J.S. J. Solution Chem. 1994, 23.
- (7) TRC-Thermodynamic Tables Non-Hydrocarbons; Thermodynamic Research Center, Texas A&M University: College Station, TX, 1966.
- (8) Lafuente, C.; Pardo, J.; Santafé, J.; Royo, F. M.; Urieta, J. S. Rev. Acad. Cienc. Zaragoza 1992, 47, 183.
- (9) Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents. Physical Properties and Methods of Purification, 4th ed.; Techniques of Chemistry; Wiley-Interscience: New York, 1986; Vol. II.
- (10) Amdur, I.; Mason, E. A. Phys. Fluids 1958, 1, 370.
- (11) Yen, L. C.; Woods, S. S. AIChE J. 1968, 12, 95.
- (12) Herington, E. F. G. J. Inst. Petrol. 1951, 37, 457.
- (13) Margules M. S.-B. Akad. Wiss. Wien, Math.-Naturwiss. KI. II. 1895, 104, 1234.
- (14) Van Laar, J. J. Z. Phys. Chem. 1910, 72, 723.
- (15) Wilson, G. M. J. Am. Chem. Soc. 1964, 86, 127.
- (16) Renon, H.; Prausnitz, J. M. AIChE. J. 1968, 14, 135.
- (17) Gmehling, J.; Onken, U.; Arlt, W. Vapor-Liquid Equilibrium Data Collection; Chemistry Data Series; DECHEMA: Frankfurt, Germany, 1981; Vol. I, Part 1a.

Received for review November 4, 1993. Accepted May 16, 1994.[®] This work was financially supported by the Dirección General de Investigación Científica y Técnica (DGICYT), Project No. PS90-0115, for which the authors are very grateful.

[®] Abstract published in Advance ACS Abstracts, August 15, 1994.